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ABSTRACT

The Moon’s triaxial, gravitational potential and
its complex, rotary motion (libration) are incorporated in
the equations of motion of a space vehicle in the near
vicinity of the Moon. A transformation is derived between
the space-fixed coordinate system, centered in the Moon,
in which the vehicle’s motion is computed, and a coor-
dinate system fixed in the lunar body, i.e., a coordinate
system which rotates with the Moon. Finally, an expression
is derived for computing the velocity of the space vehicle
in the Moon-fixed coordinate system.

I. INTRODUCTION

Two lunar missions which will provide important scientific information about the Moon are the orbiting of an
instrumented probe around the Moon and the landing of a vehicle at some designated spot on the Moon’s surface.

One prerequisite for the success of either mission is that the standard, or *“‘preflight,”” trajectory be simulated with
sufficient realism when the probe is close to the Moon. Sufficient realism can be achieved by incorporating the

Moon’s triaxial (gravitational) potential and its complex, rotary motion in the equations of motion of the probe. This
has been done in the present paper. The resulting set of equations contains a complete and accurate description of

the Moon’s motion, as well as an up-to-date representation of the lunar triaxial potential}

115 order to implement the Ranger Program (semi-soft lunar impact) currently under study at the Jet Propulsion
Laboratory, Eq. (5) - (8), (12) - (15), (18) - (42), (44a), (51) - (56), and (58) have been programmed on the 704 digital computer.
The nutation in longitude 1 and the nutation in obliquity E — which are the smallest angles computed in the program — agree
with the cotresponding values in the American Ephemeris and Nautical Almanac to within 10-6 deg. This agreement is

sufficient for an accurate simulation of the Moon’s motion.
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.  TRIAXIAL POTENTIAL

As long as the space probe remains at large distances from the Earth, Moon, or planets, the gravitational
potential of these bodies can be written simply as K/r. If the probe moves closer than approximately 4 radii from the
center of the body, K/r will no longer be valid, since probably the primary mass will not be a homogeneous sphere.
For example, observations of the Moon over the past one hundred years indicate that the lunar body is a nonhomoge-
neous, triaxial ellipsoid; i.e., the Moon has only three principal axes of inertia (the Moon is an ellipsoid, but not
one of revolution). In order to accurately describe a mission in which an instrumented probe is either orbited around
the Moon (satellite) or landed on the Moon’s surface (soft impact), account must be taken of the true potential V.

The gravitational potential (per unit mass) at a point P distant r from the center of mass O of any rigid body of mass

Mis

M A+B+C -3l 1
V=-OGCG—t v +0<—> (1)
r or3 4

where G is universal gravitation constant, [ is moment of inertia of M about OP, and 4, B, C are moments of inertia
of M about the three principal axes of inertia. (Any rigid body has at least three orthogonal, principal axes of
inertia.) If we construct a rectangular coordinate system, fixed in M, with origin at O and axes coincident with the

three principal axes of M, then

!

where x', ¥, z' are the coordinates of P in this system and 4, B, C are taken about x', y', z°,

respectively. Also, P=x'?y y' 2,:2'2, By making use of (1), the exact equations of motion of the probe in the

vicinity of the Moon can be derived. For all practical purposes, the higher order terms in 1/r* can be dropped.
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.  EQUATIONS OF MOTION

The proximity of the probe to the Moon makes it advantageous to compute the probe’s motion in a coordinate
system centered at the Moon. Although the systemx’, y', z’ is so centered, computing in it would be unwise, since
it is fixed in the Moon and consequently would partake of the Moon’s intricate rotation. A convenient coordinate
system to use is one with origin at the center of the Moon, x axis pointing in the direction of the mean! vernal
equinox? of 1950.0 (i.e., the beginning of the Besselian year of 1950) and the y axis so chosen as to make the xy
plane parallel to the mean equator of the Earth as of 1950.00. The z axis of this right-handed system will point in
the direction of the ““mean’’ spin axis of the Earth. Two reasons for selecting this particular system are (1) the
directions of the coordinate axes are fixed in space, and (2) the positions of the Moon (and hence the Earth), Sun,

and planets are available in this system (when centered at the Earth).

Let N equal the total number of celestial bodies in a given region of space. Denote the individual bodies
byi=1, 2, >, N. Construct a right-handed, rectangular coordinate system (x, y, z) with origin at the center of
mass of the Nth body (i = N) and axes fixed in an arbitrary direction, relative to the ““fixed’’ stars. Let i = 1 denote
the probe, and assume that the gravitational potential of i = 2, 3, ***, N is given by Eq. (1). In addition to the
gravitational forces acting on i = 1, assume that it is also acted upon by a thrust F. Then the equations of motion

of the probe, in the system (x, y, z), are:

lepean’” signifies that the Earth’s nutation has been ignored.

2 The vernal equinox is that point on the celestial sphere (relative to the fixed stars) in the constellation Pisces at
which the Earth’s equator and the ecliptic (orbital plane of the Earth) appear to intersect. (The autumnal equinox is the other
intersection of the ecliptic and equator, 180 deg from the vernal equinox, in the constellation Virgo). Since the Earth’s orbit
and equatorial plane are continually changing (by small amounts, relative to the fixed stars), the position of the equinox is
also continually changing.
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N N-1 D
x) -~ x; 3 Gmi Fx
x| = z G H, - p-i} — xX; + ——
5 3
[=2 i1 i1 j=1 my

N N-1
Y1~ Y; 3 Gm,; Fy .
e ) Y >
i=2 i1 il i=1 Ty my
N N-1
- 2y - 2; 3 sz Fz
Zl = Z G Hl — p P k —_ 3 z‘ +
i=2 i1 il =1 r; my )
where
-m; A, +B;+C; 15 1 x 2 y] 2 z] 2
Hi = - 3/2 + — 7 Ai — ] + Bi — ) + C‘ ——
Til il 2 i1 i1 il Ti1

Here, x., y!, z! are the coordinates of the probe measured in a rectangular coordinate system coincident with the
i» Y i P gu y

principal axes in the ith body (i = 2, 3,---,N), and iil , iil , kil are unit vectors along these respective axes; i, i, k

are unit vectors along x, ¥, 2, respectively; m; denotes the mass of the ith body; r; is the distance between my and

m; (rN =0); r;1 is the distance between m; and m, (r11 = 0). Finally,
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r.=ixi+iyi+kzi G =12,--,N-1)
= i(xl_xi)+i(yl_yi)+k(zl_zi)
=0 x]+ 0]y + k2] (i=23,--,N)

i

where

i
o

N T YN T ZN

In order to apply the above formalism to the Moon, we let N = 4 and adopt the following convention: Let,

i = 1denote the probe
2 denote the Earth
3 denote the Sun

4 denote the Moon

Since the probe will be in the vicinity of the Moon, the Earth and Sun can be regarded as perfect homogeneous
spheres (i. e., point masses), so that 4, = By = C,, 43 = B3 = C3. Also, the mass of the probe (m;) will be

negligible compared with the masses of the Earth, Sun, and Moon. Therefore, Eq. (2) become:

3 3 BN
.- Gm. Gm~ F x 3 I 1
xl:Z_s_l(xi_xl)_z 3; %+ %+ 6 H_l__s_(Aauxl+Ba21yl+Ca31z1')
Ti1 i " oo
i=2 i=2
3 3
. Gmi Gml Fy yl 3
i 7 !
y1=z ; (yi—h)—z s Vit v O T e Bagy gy + Cagy )i | o
Til i ! ton
i=2 i=2
3 3
- Gmi Gmi Fz 2 3
1 I 1
z1=z——(zi—z1)- Z 3 z; + — + G HT‘_‘?(A“IB"I +Bayyy; + Cagyzy)
r.3 r m 1 n
i=2 il i=2 ¢ y
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where

t\ 2
My 3 A+B+C 15 1 01
H - -2 P I (i
r% 2 r% 2 r? "

Here, xl', y1' , z{ now denote the coordinates of the probe in the coordinate system x', y', z', which is centered

at the Moon and aligned with the Moon’s principal axes of inertia. Also,

The quantities a;; define the transformation between x', y', z' and the coordinate system x, y, z, which we now

identify with that of 1950.0 (described above). Thus,

N
= 851 %1t212Y1 * %132

R
—
|

<
—

i
v

= 091 %1 + G99 ¥ + @93 2]

%1 = %31 %1 % %3271 * %33 %)

(4)
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IV. SELENOGRAPHIC COORDINATES

When the Moon was still in a liquid state, the tidal waves created on its surface by the Earth’s gravitational
field distorted the Moon’s shape and transformed its rotational energy into heat energy (by friction), thereby reducing
its axial rotation and eventually forcing it to present the same face to the Earth. As the Moon solidified, it acquired
a permanent disfiguration, chiefly in the form of a bulge on the side facing the Earth. This deformation caused the
Moon to undergo small, pendulous oscillations, which still exist and which are called ‘‘physical librations!’ The
principal axes of inertia and hence the axes x’, y’, z’ are assumed (by the astronomers) to lie, respectively,
through the center of the bulge toward the Earth, at right angles to this in a direction opposite to the Moon’s orbital
motion, and mutually perpendicular to the aforementioned (refer to Fig. 1). Thus, the x’, y' plane is the Moon’s
equatorial plane and the z’ axis coincides with the Moon’s axis of rotation. The x' axis passes through the Sinus

Medii (Central Bay) on the lunar surface.

L

TO CENTER
OF EARTH

s ORBITAL
MOTION

Fig. 1. Definition of selenographic latitude and longitude of Earth
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The orientation of the Moon as it orbits the Earth is illustrated in Fig. 2 and 3. Here, it is assumed that the
physical librations are zero. (The amplitude of these librations never exceeds 0°.04.) Figure 2 is a view of the

Earth—Moon system as viewed from a point in the ecliptic (which is normal to the paper).

I :1°32°

MOON

I =1°32%) ,
5 a+ I =601
B8
EARTH
= " ECLIPTIC
|
MOON |
ORBITAL PLANE
OF MOON
A x

Fig. 2. Earth~Moon system viewed from ecliptic

The inclination of the Moon’s orbit to the ecliptic @ may vary as much as 0°.30, whereas 6/ < 0°.043. Since the
inclination of the Moon’s equator to its orbital plane, a+ I, is not zero (™ 6°40"), an observer on the Earth would,
at one time, see the north pole of the Moon (position A in Fig. 2) and half a month later see the south pole (position
B). This apparent oscillation of the Moon’s poles is called the ‘‘optical libration in latitude.”’ Figure 3 shows the
Earth -Moon system as viewed from a point above the Moon’s orbital plane. Since the Moon moves in an ellipse
around the Earth, its orbital angular velocity is not constant (the Moon’s spin angular velocity is practically con-

w stant). Therefore, to an observer on the Earth, the Moon would appear to oscillate about its spin axis 2z " (refer to
Fig. 3). This apparent oscillation is called the “‘optical libration in longitude.’’ The optical librations in latitude

and longitude vary in magnitude between, approximately, 8 deg.
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Fig. 3, Earth-Moon system viewed from above orbital plane

Like the optical librations, the physical librations occur in both longitude and latitude. It is evident from
Fig. 2 and 3 that the optical librations have a period of a month (approx 28 days). The physical libration in
longitude, however, has a period of one year, and the physical libration in latitude has a period of approximately
six years. The physical librations for the years 19561961 are shown in Fig. 4. Even though these librations are
negligible compared with the optical librations, they are still essential to anaccurate simulation of the Moon’s
motion. Thus, a libration of only 0°.02 results in a displacement of 600 meters on the Moon’s surface. This distance

might become critical in the event of a vehicle soft-landing at a designated point on the lunar surface.

In the absence of all librations, the x’ axis would always point to the center of the Earth. Its deviation
from this direction is due to the combined effect of both optical and physical librations. The motion of the x* axis
can be described by means of the Earth’s selenographic coordinates. The Earth’s selenographic coordinates are
the position coordinates of the Earth measured in a coordinate system fixed in the Moon. Here, the Moon-fixed
system is simply x’, ', z'. The Earth’s selenographic latitude M. is the angle that the line connecting the centers
of Moon and Earth makes with the x* y* plane (refer to Fig.1). The Earth’s selenographic longitude A, is the angle
between the x' z' plane and the plane containing the Earth—~Moon line and the z* axis; A, is measured in the x’ y '’

plane. The positive directions of u, and A, are indicated in Fig. 1. If the Moon did not librate then p, = A, = 0.

The angles ¢, )\e are computed in terms of the observable quantities: i, A, ', A, &. Here, A and ¢ are

the right ascension and declination, respectively, of the Moon; i, A, {2’ are Euler angles describing the orientation
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~oN A

~
ofx', y', z' relative to the set of axes x, ;', z. Here, x, y, z is similar to the coordinate system %, y, z of 1950.0
(described above), except that the positive x axis points in the direction of the true (the Earth’s nutation is not
ignored) equinox3 of date (i. e., the position of the equinox at any specified instant, or date) and the % y plane is

parallel to the Earth’s true equator of (the same) date (refer to Fig. 5).

- N2

~?

CENTER
OF MOON

I
l
g 1 TO CENTER
| OF EARTH
\ {
|
AN
TRUE EQUINOX \
OF DATE
Fig. 5. Definition of i, Q' A A, ¢
It can be shown that the Earth’s selenographic latitude and longitude are given by
sin p, = sin i sin(d ~Q') cos d - cosisin P (5)

3 The vernal equinox.

n
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o | —-sin(d-Q")
>\e=sinl e + sin
sin Y
where cos ¥ =— sin i cos (4 - Q'). It is always true that lne| < 8deg, | A, | < 8 deg. Figure 6 shows the

selenographic coordinates R i1, = z' (R = mean radius of Moon = 1738.11 km) and R A, =7 plotted on the Moon’s

surface for May 1960.

The landing of a probe at a designated spot on the Moon’s surface requires that the probe’s selenographic

coordinates be known. The probe’s selenographic latitude Hp and longitude )\p are defined in Fig. 7. Here,

. 21
sin p, =
(x 2+y1'2+z 2)
’
A i
. _ >\- _
sin A , cos Ay

where x|, y;, z; are computed from Eq. (4).

12
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SELENOGRAPHIC COORDINATES
OF THE EARTH: Ru= z',
Rhg = y!

MAY 1960, O hr, UT

240|km
27
28 26
MYlo 5 | © o 25
MAY 20 o o
29 24
MAY 3 0 © . o
30 60 ”
MAY 40 © o
30
22
50 o
80
21
60 o
xl
20
70 4/ o yl
-240 -160 -80 80 160 240 km
8o 019
9O -80 ©i8
o 097
10
o —160 Cis
¥
o o %5
12 g i3 14
~240

Fig. 6. Selenographic coordinates of the Earth: Ry, = z',R A, = y'. May 1960, 0 hr, UT

13
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PROBE (x,, y,, 2)

CENTER
OF MOON

Fig. 7. Selenographic coordinates of probe

14
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V. THE TRANSFORMATION COEFFICIENTS a,,

The coefficients a;; in Eq. (4) describe the transformation from the system x, y, z of 1950.0, previously
defined, to the Moon-fixed system x, y', z'. This transformation is the net result of three separate coordinate
transformations, which are given below. First, it is necessary to introduce a fourth system x, ;'-, z, which is similar
0%,y Z, except that x points to the mean equinox of date and the x ; plane is parallel to the Earth’s mean equator

of date. We let X' denote the column vector {x' y’' z'}, and similarly for the other three systems. Then the trans-

formations are:

ok
1

®
»e

(9)
X-aX (10)
X=alX (11)
where a’, 2, a are the transformation coefficient matrices. Combining (9), (10), (11) gives
X'=(ad o) X=-0ax (12)
which is Eq. (4). In order to determine a = (aii)’ we must first investigate a’, a, a.
The transformation (9) is illustrated in Fig. 5 (if one ignores 4, &, p,, A, ). Making use of spherical
trigonometry, it is easy to show that
aj; = cosf)’ cosA~sinQ’ sinA cosi )
@9y = cos {1’ cosA + cos ()’ sinA cosi
ag, = sinAsini
ajy = —cos ' sin A - sin (' cos A cos i
“2'2 = -8in{)’ sinA+cosQ’ cosAcosi (13)

ago = cos A sin i
al'3 = sin ()’ sini

Gg3 = —CoB Q' sini

“:;3 = cosi

15
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The inclination of the ecliptic to the Earth’s equator is called the obliquity. The existence of a mean
equator and true equator, of date, implies the existence of a mean obliquity € and a true obliquity €, of date. The
difference, € ~ €, is called the nutation in obliquity E.

T - €¢=E (14)

The above are illustrated in Fig. 8.

N
Ny

~?

CENTER

CENTER OF MOON

OF MOON

gl

<2
x|

~
X

MEAN X
EQUINOX
X~ TRUE EQUINOX OF DATE
OF DATE

(a)

(b)

Fig. 8. Definition of mean and true obliquity

Here, the X Y plane is parallel to the plane of the ecliptic. The angle Y/, which is measured in this plane, is called

the nutation in longitude. If we denote the column vector {XYZ}by X, then

X - BX X-CX

e €

Combining the above gives

~

X=CBlX-aX (10a)

which is Eq. (10). The coefficients Bii and Cii can be derived from Fig. 8a and 8b, respectively. Thus

16
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Bll = 1, 812 = 313 = le = le = 0, 322 = 833 = co8 €

823 = "832 = —sin €
€y = cos ¢, Cig = siny, Ci3 =0, Cy; = —cos € sin Y
Cyp = cos € cos Yy, Co3 = -sin €, €y = —sin € sin Y

632 = sin € cos v, C33 = cos €

Since @ = C B”1, therefore

~
~

8, = cos ¥

~ ~ o,

815 = cos € sin Y

~ . ~ .

G13 = sin esm\,lJ

~ - .

ay; = —cos € sin Y

~ - ~ R )

@yp = €OS € cos € cos Y + sin € sin € r (15)
~ - .~ .- ~

@93 = COS € sln € cos lﬁ - 8ln € cos €

~ - .

@37 = —8in € sin l,ll

~ . - ~ h . ~

39 = 8In € cos € cos Y — cos € sin €

~ T L - ~

@33 = sin € sin € cos k/J + cos € cos €

In going from the mean equator and equinox of date to the mean equator and equinox of epoch (i. e., a spec-

ified date), as exemplified by Eq. (11), use is made of the geometry in Fig. 9.

17
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CoM

”/2‘;0

cM

\ CO (x)

+— ECLIPTIC OF
DATE

ECLIPTIC OF
EPOCH

c(x)

Fig. 9.

MEAN EQUATOR
OF DATE

<«+— MEAN EQUATOR

OF EPOCH

Definition of mean equator and equinox of date and epoch

The lines in Fig. 9 are great circles on the surface of a sphere, with center at the center of the Moon. The positive

x axis passes through the point Cy, and the x axis through C. The y axis lies in the CoM plane, and the ;axis in

the CM plane. The notation £, z, &, for the angles defined in the figure, is standard. Employing spherical trig-

onometry, it is easy to show that

%11
%12
213
%21
G292

Ga3

231
G329

333

18

—sin §0 sin z + cos CO cos z cos 97
sin {, cos z + cos { sin z cos O
cos { sin 6

—-cos l,o sin z — sin { cos z cos 8

cos QO cos z — sin §0 sin z cos &

(16)
~sin {, sin 0
~cos z sin 0
~sin z sin O

cos 6
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Since the desired epoch is 1950.0, the quantities go, z, O are given in the literature as

Lo = 0°.64027694 T + (°.838888(10 %) T2 + 0°.4972(107%) T3

z = 0°.64027694 T + 0°.30361111(1073) T2 4 0°.5333(1075) T3

(17)
6 = 0°.55674944 T — 0°.1183333(1073) T2 - 0°.11555(107%) T3
where T is measured in Julian centuries (of 36525 days) from January 1.0% 1950.
A simpler, and only slightly less accurate, method for computing the 1—1—‘.’. is
a;; = 1.00000000 - 0.29697(1073) T2 - 0.130(1076) T3
8y = -6y, = -0.02234988 T - 0.676(10~5) T2 + 0.221(1075) T3
a4, = -6y3 = —0.971711(107%) T + 0.207(107%) T2 + 0.96(1076) T3
- (18)
855 = 1.00000000 — 0.24976(107%) T2 - 0.15(1076) T3
g9 = @53 = -0.1085%(1073) T2 - 0.3(107") T3
ag5 = 1.00000000 — 0.4721(107%) 72 + 0.201077) T3
Here, T is measured in Julian centuries from January 1.0, 1950. (Eq. 17 and 18 appear in Ref. 1-3.)
Having now determined a’, @, a, the coefficients a = (aii) are then given by
e =(aaa)? = @)@ () (19)

4 January 1.0 denotes January 1, 0 hr, UT, i.e., the midnight which ushers in the day, January 1, at Greenwich. This
instant differs from 1950.0 by only a fraction of a mean solar day.

19
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VI. FORMULAE FROM THE EPHEMERIS

From Eq. (13) and (15) we see that ailj = ailj (2, A, ©) and, with the aid of (14), ";ii = ;"l‘ (e, E, y). The

defining expressions for these six quantities are lengthy and interrelated, and can be found among Ref. 1, 2 and 4.

They are repeated here with modifications in notation, dimensions, and time scale.

sin ' = —sin (Q+ 0+ Y)escisin(l+p)

cosi = cos (I + p) cos(_€_+E)+sin(1+p)sin(€+E) cos (2 +o0+yY)

A=A+ C+7-0-0C

€ = 23°.4457874 - 0°.01301376 T — 0°.8855(1076) T2 + 0°.503(10" %) T3

E = A€ (long period terms) + d € (short period terms)

where

Ae = 0°.255833(1072) cos O - 0°.25(1074) cos 2
+ 0°,1530555(1073) cos 2L + 0°.61111(1073) cos (3L -T')
~ 0°.25(1073) cos (L + ') — 0°.194444(107 ) cos (2L - Q)

~0°.8333(10°6) cos (2" = Q)

de = 0°.24444(107™) cos 2 € + 0°.5(1075) cos (2C - Q) h

+0°.30555(1075) cos (3C ~'') — 0°.13888(107 %) cos ( ¢ + ")

Y

—0°.8333(1076) cos ( € = + Q) + 0°.8333(107%) cos ( ( -"'=- )

+ 0°.5555(1076) cos (3 € — 2L +T'') + 0°.5555(10 ) cos (3 ¢ -’ - Q)J

20
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(21)

(22)

(23)

(24)

(25)

(26)
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Y = Oy (long period terms) + d i (short period terms) 27

where

Ay = -[0°47895611(1072) + 0°.47222(105) T] sin Q h
+ 0°.58055(10™%) sin 20 - 0°.35333(103) sin 2L

+0°.35(107%) sin (L - ") — 0°.13888(1074) sin (3L - I') . (28)

+ 0°.58333(107°) sin (L + I') + 0°.3333(105) sin (2L - Q)

+0°.13888(107°) sin (2 ' - Q) + 0°.11111(00" %) sin (2 L - 2T) J

dy = -0°56666(107%) sin 2 € + 0°.18888(10 %) sin ( € - ')
+0°.83333(1076) sin 2 ( € -I"’) - 0°.94444(1075) sin (2 € - Q)
—0°.7222(107%) sin (3 € —I"’) + 0°.41666(105) sin ( ¢ — 2L + ")

> (29)

+0°.30555(107°) sin ( € + ') + 0°.16666(10™5) sin 2 (¢ — L)

+0°.16666(1075) sin (€ —''+ Q) + 0°.16666(10™5) sin ( ( =" =)

~0°.13888(10"5) sin (3 € — 2L +T"’) = 0°.1111(10™3) sin 3 ¢ - "' — Q)J

The remaining quantities are

I = 1°32.1' (30)
0 = 12°.1127902 - 0°.0529539222 d + 0°.20795(102) T + 0°.2081(1072) T2 4 0°.2(1075) T3 (31)
€ = 64°.37545167 + 13°.1763965268 d — 0°.1131575(1072) T — 0°.113015(102) 72 + 0°.19(1075) T3 (32)
sin® = —sin (Q+0+ ) csc i sin (€ + E),
, _ (33)
cosA = ~cos Q1 +0+yY)cos Q' 8in QL+ 0+ ) sin Q' cos(e+E)

21
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[’ = 208°.8439877 + 0°.1114040803 d — 0°.010334 T — 0°.010343 T2 — ¢°.12(107%) 13 (34)
L = 280°.08121000 + 0°.9856473354 d + 0°.302(1073) T + 0°.302(1073) T2 (35)
I = 282°.08053028 + 0°.470684(107%) d + 0°.45525(1073) T + 0°.4575(107%) 72 + 0°.3(1075) T3 (36)

In Eq. (23), (31), (32), (34), (35), and (36), T is measured in Julian centuries (of 36525 days) from January 1.0, 1950,

and d is measured in Julian days from this same date. The quantities I, {2, €, and A are illustrated in Fig. 10.

CENTER
OF MOON

ECLIPTIC

ORBIT OF
MOON

/

MEAN EQUINOX
OF DATE

<«———FEARTH'S TRUE
EQUATOR

Fig. 10. Definition of I, , €, and &
The symbol ( is the longitude of the mean ascending node of the Moon's orbit measured in the ecliptic (X Y plane)

from the mean equinox of date (+ X axis); € is the mean longitude of the Moon measured in the ecliptic from the

+ X axis to the mean ascending node of the Moon’s orbit, and then along the orbit; I' "is the mean longitude of the
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Moon’s perigee, measured the same way as € . The quantities L and I are the mean longitude of the Sun and of the

Sun’s perigee, respectively. (L - I is the mean anomaly of the Sun.)

The quantities 0, 7, o are small perturbations in (2, € , I, respectively. (Refer to Eq. 20, 21, 22 and 33.)

They appear in Ref. 4, and are repeated here with an altered time scale.

osinl = -0°0302777 sin g + 0°.0102777 sin (g + 2w) - 0°.305555(102) sin (2g + 2w)

T = —0°.3333(102) sin g + 0°.0163888 sin g’ + 0°.5(1072) sin 2w

p = ~0°.0297222 cos g + 0°.0102777 cos (g + 2w) —0°.305555(1072) cos (2g + 2w)

where

= 215°.54013 + 13°.064992 d

[e]
|

g' = 358.009067 + 0°.9856005 d

w = 196°.745632 + 0°,1643586 d

Here, d is measured in Julian days from January 1.0, 1950,

(37)

(38)

(39)

(40)

(41)

(42)
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VII. SIMPLIFICATION

A large amount of lunar exploration can be expected in the coming decade. During the period 1960 - 70, T

will lie in the range

0.10 < T < 0.20

so that terms involving T3 in Eq. (17), (18), (23), (31), (32), (34), (35), (36) can, for all practical purposes, be

omitted.

An important quantity to know is the velocity of the probe relative to the Moon-fixed system; i.e.,

vll = (xll 2, y1' 2, z'l' 2y4, The velocity components xll R yi, 21' are obtained from Eq. (12) and (19):

dX' d dX
__=_‘f-X+a—- (43)

dt dt dt

where

R A N R P A LS @ @)t @
dt dt dt a
(44)
da’ 1 da - da h
- (a > (@)t (@)l (a7 (—a> (@ T+@)T @1 —
. de de

It is evident from Eq. (13), (15), (18), (20) - (42) that the elements of a',d,a are ultimately a function of T, T2,

and d. Since the desirable units of vll are distance per second, the time derivative of these elements will be a

function of

24
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where p = 60 x 60 x 24 x 36525 and ¢ = p/36525. Here, ¢ is measured in seconds from January 1.0, 1950. For the
decade 1960 - 70,

3.15576(108) < ¢ < 6.31152(10%) sec (45)

Since the elements of a are explicit functions of T and T2 (refer to Eq. 18), it is easily shown that

daii

dt

< 0.7(10711) gec1 (46)

The elements of a are a function of _€_, E, and . It can be shown that

€ _ _ d _ -
— < 0.8(10713) gec71, —| <0.3010711) gec?, 4y < 0.3(10719) gec!
dt dt ’ dt
In view of Eq. (15),
.za;.l.
< 0.3(10710) gec1 (47)
dt

The elements of a’ are a function of {1', i, and A, where A is given by Eq. (22). From page 51 of Ref. 2,

1

< 0.7(1079) sec™l, < 0.82(10™) sec”1, < 0.102(1077) sec”!

dt

dt

dt

Computing the limits on the time derivatives of €, 7, (1, o from Eq. (32), (38), (31), (37), respectively, it
follows that IdA/dt | < 0.3(1075) sec”L. Consequently, from Eq. (13),
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dailj
< 0.3(1075) sec™! (48)

dt

We write Eq. (44) as da/dt = K + L + M, where K, L, M correspond, respectively, to the terms in Eq. (44). Since each

~ - . .
of the third-order matrices ', a, a is orthogonal, the maximum absolute value of any element of the product matrices

(). (a), (a') 1. (@) is unity. Hence,

da;; )
|K;l<s |—Z| = 3(3)107%) sec), L1 <9(.3)10719) sec™d, [ M, | < 3(.7)(107M) sec™ (49)
dt

max

Consider the first term in Eq. (43). Let

da
dt

X =K+L+MX =KX+LX+MX=U+V+W (50)

The largest distance from the Moon at which vl' will be of practical interest is approximately 10 lunar radii>, i.e.,
17,380 km. We let the maximum absolute value of any element of X equal this distance. Then, from (49), it follows

that

lUii l<3 lKii | (17,380 km) = 470 meters/sec
x

ma.

| W"I' | < 0.0141 meters/sec

|Wii | < 0,109(1072) meters/sec

In view of the upper bounds on | Vii | and | Wii |, little accuracy will be lost if ¥ and W are considered negligible

in Eq. (50). Hence, we shall write Eq. (44) as

5The orbital radius of a lunar satellite will probably not exceed 10 lunar radii.

26
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A further simplification can be made in the time derivative of a’.

dt dt

-1

& (d" ) @1 (@

Since the a;

(44a)

]

; are functions of 1, i, A,

the elements of da’ /dt will be functions of the time derivatives of these same quantities. In view of the upper

bounds on |dQ*/de |, |di/de |, |dA/de L, given above, terms which contain d{0’ /dt or di/dt can, for all practical

purposes, be ignored. The elements of da’ /dt are then given by the expressions below.

[
dall

dt

’

da2l

dt

[

da31

dt

1

dalz

dt

[
da22

dt

'

da32

dt

da13

dt

dA
cos ' sinA . — ~ sinfl' cosicosA -
dt
dA
sin Q' sinA . — + cos Q' cosicosA-.
dt
dA
sinicosA. —
dt
dA
cos {1’ cosA . — + 8inf)’ cosisinA.
dt
dA
sin 1 cosA - — — cos{)’ cosisinA-.
dt
dA
sinisinA. —
dt
dagg dag,
~ 0,
dt dt

de

dA
dt

dA
_ (51)
dt

dA
dt
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where
dA d(A) dq dr dl do
dt dt dt dt dt dt
Here,
— df) do
-sin (€+E) cos Q+o+y). (— + _._>
dA dt dt
_ rad/sec
dt sin i cos A
dq -5 =23
— = 0.266170762(10 °) rad/sec — 0.39607482(10 “°) ¢ rad/sec
dt
a7 -9 -10 ' -11
— = -0.153527294(107") cos g + 0.569494067(10 *") cos g + 0.579473484(10™*) cos 2 w rad/sec
dt

df) -7 -23
— = -0.106969843(10" ) rad/sec + 0.729311779(107=°) ¢ rad/sec

dt

(52)

(53)

(54)

(55)

do = - -
—— = -0.520642191(1077) cos g + 0.181177445(1077) cos (g + 2w) - 0.106405785(10 7) cos(2g + 2w) rad/sec

dt

(56)

where g, g', w are given by Eq. (40) — (42). In Eq. (53) and (55), ¢ is measured in seconds from January 1.0, 1950.
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Vill.  PRINCIPAL MOMENTS OF INERTIA

The values of 4, B, C obtained from the literature are computed on the basis of observations made of the
Moon’s rotary and orbital motion. Thus, the ratio (C — 4)/C depends on the orientation of the Moon’s rotation axis,
while the quantity (3/2) [(B~4)/MR?] depends on the Moon’s annual libration in longitude (X ). Here, M = mass of
Moon and R = mean radius of the Moon, as measured from the Earth. In addition, the quantity (3/2) (C/MR?) is a
measure of the Moon’s density distribution, which is ascertained from the Moon’s orbital motion. Values of these

three quantities are taken from Ref. 5 (pp. 158, 164, 166, and 168).

C-4 o)
Z L 0.620(1073)
C

3 B-4
- = 0590107%) (57)
2 MR2
3 C
- = 0.5956
2 MR2 )

If values are assigned to M and R, then Eq. (57) can be solved for 4, B, C. From Ref. 6 (p. 156), G = 0.6673(10710)
meterss/kg sec2. From values of M_/M (M_ = mass of Earth), R, (= equatorial radius of Earth), 1 foot/international
meter,and GM, (Earth radii)®/min?, Ref. 7, one computes GM = 0.48984463(10!3) meters3/sec?. Combining this with

the above value of G, we get M = 0.73406957(1023) kg. Now,

R =sD

N
[

H.P)D

where D is the distance between the centers of Earth and Moon, s is the Moon’s semidiameter (angle subtended at
the Earth’s center by R) and H. P. is the Moon’s horizontal parallax (angle subtended at the Moon’s center by R, ).

Eliminating D gives
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where, R, = 0.637827(107) meters. Values of s and H. P. for every half day are listed in Ref. 2 (pp. 52 ~ 67).
Eight sets of values of s and . P. were selected which corresponded to four locations of the Moon at apogee and
four at perigee, in the months of January, February, November, and December. Substituting these in the above
formula yielded eight values of R which differed at most by 0.034793 km. We adopt the following representative
value of R: R = 1737.880 km. Substituting M and R in Eq. (57) yields

0.8797655(10%%) kg meters?

4 -
B = 0.8798527(103°) kg meters? (58)
C = 0.8803192(10%°) kg meters?

We can look forward to the time when extended observations of an artificial lunar satellite will yield

significantly more accurate values of 4, B, C.

ACKNOWLEDGMENT

Thanks are due Dr. Russell Carr, who corrected several
misconceptions held by the author, and Kurt Heftman, who contributed

an accurate translation of Hayn’s Selenographische Koordinaten.

30




JPL Technical Report No. 32-41

REFERENCES

The Nautical Almanac, U. S. Government Printing Office, Washington, D. C., 1941.

The American Ephemeris and Nautical Almanac, U. S. Government Printing Office, Washington, D. C.,

1960, 1961.
Planetary Coordinates for the Years 1960-1980, Her Majesty’s Stationery Office, London, 1958.

Hayn, F., ‘“‘Abhandlung der K. S. Gesellschaft der Wissenschaften,”” Mathematical Physics, Selenographische
Koordinaten, Vol. 27, 29, 30 (1902, 1906, 1909).

Jeffreys, H., The Earth, 4th ed., Cambridge University Press, 1959.

Heiskanev, W. A., and Vening Meinesz, F. A., The Earth and Its Gravity Field, McGraw-Hill Book Company,
Inc., New York, 1959.

Herrick, S., Baker, R. M. L., et al, Gravitational and Related Constants for Accurate Space Navigation,

Astronomical Paper 24, University of California at Los Angeles, Astronomy Department, pp. 297 -338.

3



